Internal
problem
ID
[15112]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
8.
Review
exercises
for
part
of
part
II.
page
143
Problem
number
:
33
Date
solved
:
Thursday, March 13, 2025 at 05:40:35 AM
CAS
classification
:
[[_homogeneous, `class D`], _rational, _Bernoulli]
ode:=x*y(x)^3*diff(y(x),x) = y(x)^4-x^2; dsolve(ode,y(x), singsol=all);
ode=x*y[x]^3*D[y[x],x]==y[x]^4-x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + x*y(x)**3*Derivative(y(x), x) - y(x)**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)