Internal
problem
ID
[15113]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
8.
Review
exercises
for
part
of
part
II.
page
143
Problem
number
:
34
Date
solved
:
Thursday, March 13, 2025 at 05:40:39 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Bernoulli]
ode:=diff(y(x),x) = 4*y(x)-16*exp(4*x)/y(x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==4*y[x]-16*Exp[4*x]/y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*y(x) + Derivative(y(x), x) + 16*exp(4*x)/y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)