73.11.24 problem 17.4 (f)

Internal problem ID [15259]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 17. Second order Homogeneous equations with constant coefficients. Additional exercises page 334
Problem number : 17.4 (f)
Date solved : Thursday, March 13, 2025 at 05:51:01 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=6\\ y^{\prime }\left (0\right )&=-5 \end{align*}

Maple. Time used: 0.015 (sec). Leaf size: 13
ode:=4*diff(diff(y(x),x),x)+4*diff(y(x),x)+y(x) = 0; 
ic:=y(0) = 6, D(y)(0) = -5; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -2 \,{\mathrm e}^{-\frac {x}{2}} \left (x -3\right ) \]
Mathematica. Time used: 0.015 (sec). Leaf size: 17
ode=4*D[y[x],{x,2}]+4*D[y[x],x]+y[x]==0; 
ic={y[0]==6,Derivative[1][y][0] ==-5}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -2 e^{-x/2} (x-3) \]
Sympy. Time used: 0.166 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 4*Derivative(y(x), x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {y(0): 6, Subs(Derivative(y(x), x), x, 0): -5} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (6 - 2 x\right ) e^{- \frac {x}{2}} \]