73.11.25 problem 17.5 (a)

Internal problem ID [15260]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 17. Second order Homogeneous equations with constant coefficients. Additional exercises page 334
Problem number : 17.5 (a)
Date solved : Thursday, March 13, 2025 at 05:51:03 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+25 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+25*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} \sin \left (5 x \right )+c_{2} \cos \left (5 x \right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+25*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (5 x)+c_2 \sin (5 x) \]
Sympy. Time used: 0.061 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(25*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (5 x \right )} + C_{2} \cos {\left (5 x \right )} \]