73.11.26 problem 17.5 (b)

Internal problem ID [15261]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 17. Second order Homogeneous equations with constant coefficients. Additional exercises page 334
Problem number : 17.5 (b)
Date solved : Thursday, March 13, 2025 at 05:51:06 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (c_{1} \sin \left (2 x \right )+c_{2} \cos \left (2 x \right )\right ) \]
Mathematica. Time used: 0.023 (sec). Leaf size: 26
ode=D[y[x],{x,2}]+2*D[y[x],x]+5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} (c_2 \cos (2 x)+c_1 \sin (2 x)) \]
Sympy. Time used: 0.157 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (2 x \right )} + C_{2} \cos {\left (2 x \right )}\right ) e^{- x} \]