73.12.4 problem 19.1 (d)

Internal problem ID [15277]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 19. Arbitrary Homogeneous linear equations with constant coefficients. Additional exercises page 369
Problem number : 19.1 (d)
Date solved : Thursday, March 13, 2025 at 05:51:53 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-81 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 29
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-81*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} {\mathrm e}^{-3 x}+{\mathrm e}^{3 x} c_{2} +c_{3} \sin \left (3 x \right )+c_4 \cos \left (3 x \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 36
ode=D[y[x],{x,4}]-81*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{3 x}+c_3 e^{-3 x}+c_2 \cos (3 x)+c_4 \sin (3 x) \]
Sympy. Time used: 0.094 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-81*y(x) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 3 x} + C_{2} e^{3 x} + C_{3} \sin {\left (3 x \right )} + C_{4} \cos {\left (3 x \right )} \]