73.23.14 problem 33.5 (b)

Internal problem ID [15660]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 33. Power series solutions I: Basic computational methods. Additional Exercises. page 641
Problem number : 33.5 (b)
Date solved : Tuesday, January 28, 2025 at 08:03:47 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y^{\prime \prime }+x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 39

Order:=6; 
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}+\frac {1}{8} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{3} x^{3}+\frac {1}{15} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[D[y[x],{x,2}]+x*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{15}-\frac {x^3}{3}+x\right )+c_1 \left (\frac {x^4}{8}-\frac {x^2}{2}+1\right ) \]