Internal
problem
ID
[1002]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.3,
The
eigenvalue
method
for
linear
systems.
Page
395
Problem
number
:
problem
49
Date
solved
:
Monday, January 27, 2025 at 03:22:50 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.117 (sec). Leaf size: 131
dsolve([diff(x__1(t),t)=139*x__1(t)-14*x__2(t)-52*x__3(t)-14*x__4(t)+28*x__5(t),diff(x__2(t),t)=-22*x__1(t)+5*x__2(t)+7*x__3(t)+8*x__4(t)-7*x__5(t),diff(x__3(t),t)=370*x__1(t)-38*x__2(t)-139*x__3(t)-38*x__4(t)+76*x__5(t),diff(x__4(t),t)=152*x__1(t)-16*x__2(t)-59*x__3(t)-13*x__4(t)+35*x__5(t),diff(x__5(t),t)=95*x__1(t)-10*x__2(t)-38*x__3(t)-7*x__4(t)+23*x__5(t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 2676
DSolve[{D[ x1[t],t]==139*x1[t]-14*x2[t]-52*x3[t]-14*x4[t]+28*x5[t],D[ x2[t],t]==-22*x1[t]+5*x2[t]+7*x3[t]+8*x4[t]-7*x5[t],D[ x3[t],t]==370*x1[t]-38*x2[t]-139*x3[t]-38*x4[t]+76*x5[t],D[ x4[t],t]==152*x1[t]-16*x2[t]-59*x3[t]-13*x4[t]+45*x5[t],D[ x5[t],t]==95*x1[t]-10*x2[t]-38*x3[t]-7*x4[t]+23*x5[t]},{x1[t],x2[t],x3[t],x4[t],x5[t]},t,IncludeSingularSolutions -> True]
Too large to display