9.4.39 problem problem 50

Internal problem ID [1003]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number : problem 50
Date solved : Monday, January 27, 2025 at 03:22:51 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=9 x_{1} \left (t \right )+13 x_{2} \left (t \right )-13 x_{6} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-14 x_{1} \left (t \right )+19 x_{2} \left (t \right )-10 x_{3} \left (t \right )-20 x_{4} \left (t \right )+10 x_{5} \left (t \right )+4 x_{6} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=-30 x_{1} \left (t \right )+12 x_{2} \left (t \right )-7 x_{3} \left (t \right )-30 x_{4} \left (t \right )+12 x_{5} \left (t \right )+18 x_{6} \left (t \right )\\ \frac {d}{d t}x_{4} \left (t \right )&=-12 x_{1} \left (t \right )+10 x_{2} \left (t \right )-10 x_{3} \left (t \right )-9 x_{4} \left (t \right )+10 x_{5} \left (t \right )+2 x_{6} \left (t \right )\\ \frac {d}{d t}x_{5} \left (t \right )&=6 x_{1} \left (t \right )+9 x_{2} \left (t \right )+6 x_{4} \left (t \right )+5 x_{5} \left (t \right )-15 x_{6} \left (t \right )\\ \frac {d}{d t}x_{6} \left (t \right )&=-14 x_{1} \left (t \right )+23 x_{2} \left (t \right )-10 x_{3} \left (t \right )-20 x_{4} \left (t \right )+10 x_{5} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.151 (sec). Leaf size: 134

dsolve([diff(x__1(t),t)=9*x__1(t)+13*x__2(t)+0*x__3(t)+0*x__4(t)+0*x__5(t)-13*x__6(t),diff(x__2(t),t)=-14*x__1(t)+19*x__2(t)-10*x__3(t)-20*x__4(t)+10*x__5(t)+4*x__6(t),diff(x__3(t),t)=-30*x__1(t)+12*x__2(t)-7*x__3(t)-30*x__4(t)+12*x__5(t)+18*x__6(t),diff(x__4(t),t)=-12*x__1(t)+10*x__2(t)-10*x__3(t)-9*x__4(t)+10*x__5(t)+2*x__6(t),diff(x__5(t),t)=6*x__1(t)+9*x__2(t)+0*x__3(t)+6*x__4(t)+5*x__5(t)-15*x__6(t),diff(x__6(t),t)=-14*x__1(t)+23*x__2(t)-10*x__3(t)-20*x__4(t)+10*x__5(t)+0*x__6(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= c_5 \,{\mathrm e}^{-4 t}+c_6 \,{\mathrm e}^{9 t} \\ x_{2} \left (t \right ) &= c_6 \,{\mathrm e}^{9 t}+c_4 \,{\mathrm e}^{3 t}+{\mathrm e}^{-7 t} c_3 \\ x_{3} \left (t \right ) &= {\mathrm e}^{-7 t} c_3 +c_2 \,{\mathrm e}^{5 t}-{\mathrm e}^{11 t} c_1 \\ x_{4} \left (t \right ) &= {\mathrm e}^{11 t} c_1 +c_4 \,{\mathrm e}^{3 t}+{\mathrm e}^{-7 t} c_3 \\ x_{5} \left (t \right ) &= c_2 \,{\mathrm e}^{5 t}+{\mathrm e}^{11 t} c_1 +c_5 \,{\mathrm e}^{-4 t} \\ x_{6} \left (t \right ) &= c_6 \,{\mathrm e}^{9 t}+c_5 \,{\mathrm e}^{-4 t}+c_4 \,{\mathrm e}^{3 t}+{\mathrm e}^{-7 t} c_3 \\ \end{align*}

Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 1882

DSolve[{D[ x1[t],t]==9*x1[t]+13*x2[t]-13*x6[t],D[ x2[t],t]==-14*x1[t]+19*x2[t]-10*x3[t]-20*x4[t]+10*x5[t]+4*x6[t],D[ x3[t],t]==-30*x1[t]+12*x2[t]-7*x3[t]-30*x4[t]+12*x5[t]+18*x6[t],D[ x4[t],t]==-12*x1[t]+10*x2[t]-10*x3[t]-9*x4[t]+10*x5[t]+2*x6[t],D[ x5[t],t]==6*x1[t]+9*x2[t]+6*x4[t]+5*x5[t]-15*x6[t],D[ x6[t],t]==-14*x1[t]+23*x2[t]-10*x3[t]-20*x4[t]-10*x5[t]},{x1[t],x2[t],x3[t],x4[t],x5[t],x6[t]},t,IncludeSingularSolutions -> True]
 

Too large to display