Internal
problem
ID
[1003]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.3,
The
eigenvalue
method
for
linear
systems.
Page
395
Problem
number
:
problem
50
Date
solved
:
Monday, January 27, 2025 at 03:22:51 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.151 (sec). Leaf size: 134
dsolve([diff(x__1(t),t)=9*x__1(t)+13*x__2(t)+0*x__3(t)+0*x__4(t)+0*x__5(t)-13*x__6(t),diff(x__2(t),t)=-14*x__1(t)+19*x__2(t)-10*x__3(t)-20*x__4(t)+10*x__5(t)+4*x__6(t),diff(x__3(t),t)=-30*x__1(t)+12*x__2(t)-7*x__3(t)-30*x__4(t)+12*x__5(t)+18*x__6(t),diff(x__4(t),t)=-12*x__1(t)+10*x__2(t)-10*x__3(t)-9*x__4(t)+10*x__5(t)+2*x__6(t),diff(x__5(t),t)=6*x__1(t)+9*x__2(t)+0*x__3(t)+6*x__4(t)+5*x__5(t)-15*x__6(t),diff(x__6(t),t)=-14*x__1(t)+23*x__2(t)-10*x__3(t)-20*x__4(t)+10*x__5(t)+0*x__6(t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 1882
DSolve[{D[ x1[t],t]==9*x1[t]+13*x2[t]-13*x6[t],D[ x2[t],t]==-14*x1[t]+19*x2[t]-10*x3[t]-20*x4[t]+10*x5[t]+4*x6[t],D[ x3[t],t]==-30*x1[t]+12*x2[t]-7*x3[t]-30*x4[t]+12*x5[t]+18*x6[t],D[ x4[t],t]==-12*x1[t]+10*x2[t]-10*x3[t]-9*x4[t]+10*x5[t]+2*x6[t],D[ x5[t],t]==6*x1[t]+9*x2[t]+6*x4[t]+5*x5[t]-15*x6[t],D[ x6[t],t]==-14*x1[t]+23*x2[t]-10*x3[t]-20*x4[t]-10*x5[t]},{x1[t],x2[t],x3[t],x4[t],x5[t],x6[t]},t,IncludeSingularSolutions -> True]
Too large to display