74.10.44 problem 42 (b)

Internal problem ID [16249]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.2, page 147
Problem number : 42 (b)
Date solved : Tuesday, January 28, 2025 at 08:25:46 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.442 (sec). Leaf size: 82

dsolve(diff(y(t),t$2)^2-2*diff(y(t),t$2)*diff(y(t),t)+y(t)^2=0,y(t), singsol=all)
 
\begin{align*} y &= 0 \\ y &= c_{1} {\mathrm e}^{t} \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (t +\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_f}^{2}+\sqrt {\textit {\_f}^{2}-1}-\textit {\_f}}d \textit {\_f} +c_{1} \right )d t +c_{2}} \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (t -\int _{}^{\textit {\_Z}}-\frac {1}{\textit {\_f}^{2}-\sqrt {\textit {\_f}^{2}-1}-\textit {\_f}}d \textit {\_f} +c_{1} \right )d t +c_{2}} \\ \end{align*}

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[t],{t,2}]^2-2*D[y[t],{t,2}]*D[y[t],t]+y[t]^2==0,y[t],t,IncludeSingularSolutions -> True]
 

Not solved