74.4.54 problem 54

Internal problem ID [15868]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 54
Date solved : Thursday, March 13, 2025 at 06:55:09 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.053 (sec). Leaf size: 11
ode:=diff(y(x),x) = exp(x-y(x)); 
ic:=y(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \ln \left ({\mathrm e}^{x}+{\mathrm e}-1\right ) \]
Mathematica. Time used: 0.723 (sec). Leaf size: 12
ode=D[y[x],x]==Exp[x-y[x]]; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \log \left (e^x-1+e\right ) \]
Sympy. Time used: 0.195 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(x - y(x)) + Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \log {\left (e^{x} - 1 + e \right )} \]