74.7.18 problem 18

Internal problem ID [16016]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.5, page 64
Problem number : 18
Date solved : Thursday, March 13, 2025 at 07:14:01 AM
CAS classification : [_linear]

\begin{align*} 2 y-3 t +t y^{\prime }&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 11
ode:=2*y(t)-3*t+t*diff(y(t),t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = t +\frac {c_{1}}{t^{2}} \]
Mathematica. Time used: 0.025 (sec). Leaf size: 13
ode=( 2*y[t]-3*t  )+( t )*D[y[t],t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to t+\frac {c_1}{t^2} \]
Sympy. Time used: 0.159 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), t) - 3*t + 2*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {C_{1}}{t^{2}} + t \]