74.7.19 problem 19
Internal
problem
ID
[16017]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
19
Date
solved
:
Thursday, March 13, 2025 at 07:14:04 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} t y-y^{2}+t \left (t -3 y\right ) y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 2.319 (sec). Leaf size: 235
ode:=t*y(t)-y(t)^2+t*(t-3*y(t))*diff(y(t),t) = 0;
dsolve(ode,y(t), singsol=all);
\begin{align*}
y &= \frac {{\left (\left (\sqrt {3}\, \sqrt {c_{1}^{4} t^{4}+27}+9\right ) t c_{1} \right )}^{{1}/{3}} 3^{{2}/{3}}}{c_{1} \left (-c_{1}^{2} t^{2} 3^{{1}/{3}}+{\left (\left (\sqrt {3}\, \sqrt {c_{1}^{4} t^{4}+27}+9\right ) t c_{1} \right )}^{{2}/{3}}\right )} \\
y &= -\frac {2 {\left (\left (\sqrt {3}\, \sqrt {c_{1}^{4} t^{4}+27}+9\right ) t c_{1} \right )}^{{1}/{3}} 3^{{2}/{3}}}{c_{1} \left (\left (1+i \sqrt {3}\right ) {\left (\left (\sqrt {3}\, \sqrt {c_{1}^{4} t^{4}+27}+9\right ) t c_{1} \right )}^{{2}/{3}}+t^{2} c_{1}^{2} \left (i 3^{{5}/{6}}-3^{{1}/{3}}\right )\right )} \\
y &= \frac {2 {\left (\left (\sqrt {3}\, \sqrt {c_{1}^{4} t^{4}+27}+9\right ) t c_{1} \right )}^{{1}/{3}} 3^{{2}/{3}}}{\left (\left (i \sqrt {3}-1\right ) {\left (\left (\sqrt {3}\, \sqrt {c_{1}^{4} t^{4}+27}+9\right ) t c_{1} \right )}^{{2}/{3}}+t^{2} \left (3^{{1}/{3}}+i 3^{{5}/{6}}\right ) c_{1}^{2}\right ) c_{1}} \\
\end{align*}
✓ Mathematica. Time used: 0.117 (sec). Leaf size: 42
ode=( t*y[t]-y[t]^2 )+( t*(t-3*y[t]) )*D[y[t],t]==0;
ic={};
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
\[
\text {Solve}\left [\int _1^{\frac {y(t)}{t}}\frac {3 K[1]-1}{K[1] (2 K[1]-1)}dK[1]=-2 \log (t)+c_1,y(t)\right ]
\]
✓ Sympy. Time used: 48.597 (sec). Leaf size: 352
from sympy import *
t = symbols("t")
y = Function("y")
ode = Eq(t*(t - 3*y(t))*Derivative(y(t), t) + t*y(t) - y(t)**2,0)
ics = {}
dsolve(ode,func=y(t),ics=ics)
\[
\left [ y{\left (t \right )} = \frac {\frac {2 t^{2}}{\sqrt [3]{\frac {54 C_{1}}{t} - t^{3} + 6 \sqrt {3} \sqrt {C_{1} \left (\frac {27 C_{1}}{t^{2}} - t^{2}\right )}}} + t - \sqrt {3} i t - \sqrt [3]{\frac {54 C_{1}}{t} - t^{3} + 6 \sqrt {3} \sqrt {C_{1} \left (\frac {27 C_{1}}{t^{2}} - t^{2}\right )}} - \sqrt {3} i \sqrt [3]{\frac {54 C_{1}}{t} - t^{3} + 6 \sqrt {3} \sqrt {C_{1} \left (\frac {27 C_{1}}{t^{2}} - t^{2}\right )}}}{6 \left (1 - \sqrt {3} i\right )}, \ y{\left (t \right )} = \frac {\frac {2 t^{2}}{\sqrt [3]{\frac {54 C_{1}}{t} - t^{3} + 6 \sqrt {3} \sqrt {C_{1} \left (\frac {27 C_{1}}{t^{2}} - t^{2}\right )}}} + t + \sqrt {3} i t - \sqrt [3]{\frac {54 C_{1}}{t} - t^{3} + 6 \sqrt {3} \sqrt {C_{1} \left (\frac {27 C_{1}}{t^{2}} - t^{2}\right )}} + \sqrt {3} i \sqrt [3]{\frac {54 C_{1}}{t} - t^{3} + 6 \sqrt {3} \sqrt {C_{1} \left (\frac {27 C_{1}}{t^{2}} - t^{2}\right )}}}{6 \left (1 + \sqrt {3} i\right )}, \ y{\left (t \right )} = - \frac {t^{2}}{6 \sqrt [3]{\frac {54 C_{1}}{t} - t^{3} + 6 \sqrt {3} \sqrt {C_{1} \left (\frac {27 C_{1}}{t^{2}} - t^{2}\right )}}} + \frac {t}{6} - \frac {\sqrt [3]{\frac {54 C_{1}}{t} - t^{3} + 6 \sqrt {3} \sqrt {C_{1} \left (\frac {27 C_{1}}{t^{2}} - t^{2}\right )}}}{6}\right ]
\]