74.14.15 problem 15

Internal problem ID [16420]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.6, page 187
Problem number : 15
Date solved : Tuesday, January 28, 2025 at 09:07:45 AM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime }+9 y^{\prime }&=\sec \left (3 t \right ) \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 115

dsolve(diff(y(t),t$3)+9*diff(y(t),t)=sec(3*t),y(t), singsol=all)
 
\[ y = \frac {i \left ({\mathrm e}^{3 i t}-{\mathrm e}^{-3 i t}\right ) \ln \left (\frac {{\mathrm e}^{3 i t}}{{\mathrm e}^{6 i t}+1}\right )}{54}-\frac {i \arctan \left (2 \,{\mathrm e}^{i t}-\sqrt {3}\right )}{27}-\frac {i \arctan \left (2 \,{\mathrm e}^{i t}+\sqrt {3}\right )}{27}-\frac {i \arctan \left ({\mathrm e}^{3 i t}\right )}{27}-\frac {i {\mathrm e}^{-3 i t}}{54}+\frac {i {\mathrm e}^{3 i t}}{54}+\frac {i \arctan \left ({\mathrm e}^{i t}\right )}{27}+\frac {\left (1+9 c_{1} -\ln \left (2\right )\right ) \sin \left (3 t \right )}{27}+\frac {\left (-t -3 c_{2} \right ) \cos \left (3 t \right )}{9}+c_{3} \]

Solution by Mathematica

Time used: 60.048 (sec). Leaf size: 51

DSolve[D[ y[t],{t,3}]+9*D[y[t],t]==Sec[3*t],y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \int _1^t\left (\cos (3 K[1]) \left (c_1+\frac {1}{9} \log (\cos (3 K[1]))\right )+\frac {1}{3} (3 c_2+K[1]) \sin (3 K[1])\right )dK[1]+c_3 \]