Internal
problem
ID
[16039]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
41
Date
solved
:
Thursday, March 13, 2025 at 07:36:04 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
With initial conditions
ode:=y(t)^4+(t^4-t*y(t)^3)*diff(y(t),t) = 0; ic:=y(1) = 2; dsolve([ode,ic],y(t), singsol=all);
ode=y[t]^4+(t^4-t*y[t]^3)*D[y[t],t]==0; ic={y[1]==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
{}
from sympy import * t = symbols("t") y = Function("y") ode = Eq((t**4 - t*y(t)**3)*Derivative(y(t), t) + y(t)**4,0) ics = {y(1): 2} dsolve(ode,func=y(t),ics=ics)