9.8.9 problem problem 9

Internal problem ID [1074]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number : problem 9
Date solved : Monday, January 27, 2025 at 04:32:56 AM
CAS classification : [_Gegenbauer]

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 39

Order:=6; 
dsolve((x^2-1)*diff(y(x),x$2)+8*x*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (15 x^{4}+6 x^{2}+1\right ) y \left (0\right )+\left (x +\frac {10}{3} x^{3}+7 x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

AsymptoticDSolveValue[(x^2-1)*D[y[x],{x,2}]+8*x*D[y[x],x]+12*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (7 x^5+\frac {10 x^3}{3}+x\right )+c_1 \left (15 x^4+6 x^2+1\right ) \]