9.8.10 problem problem 10

Internal problem ID [1075]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number : problem 10
Date solved : Monday, January 27, 2025 at 04:32:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 3 y^{\prime \prime }+x y^{\prime }-4 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 39

Order:=6; 
dsolve(3*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {2}{3} x^{2}+\frac {1}{27} x^{4}\right ) y \left (0\right )+\left (x +\frac {1}{6} x^{3}+\frac {1}{360} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[3*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{360}+\frac {x^3}{6}+x\right )+c_1 \left (\frac {x^4}{27}+\frac {2 x^2}{3}+1\right ) \]