8.3.18 problem 19

Internal problem ID [694]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 1.4. Separable equations. Page 43
Problem number : 19
Date solved : Tuesday, March 04, 2025 at 11:32:49 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&={\mathrm e}^{x} y \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \,{\mathrm e} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 9
ode:=diff(y(x),x) = exp(x)*y(x); 
ic:=y(0) = 2*exp(1); 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 2 \,{\mathrm e}^{{\mathrm e}^{x}} \]
Mathematica. Time used: 0.039 (sec). Leaf size: 12
ode=D[y[x],x] == Exp[x]*y[x]; 
ic=y[0]==2*Exp[1]; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 2 e^{e^x} \]
Sympy. Time used: 0.218 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)*exp(x) + Derivative(y(x), x),0) 
ics = {y(0): 2*E} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 2 e^{e^{x}} \]