75.3.1 problem 41

Internal problem ID [16698]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 3. The method of successive approximation. Exercises page 31
Problem number : 41
Date solved : Tuesday, January 28, 2025 at 09:18:21 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (-1\right )&=0 \end{align*}

Solution by Maple

Time used: 0.230 (sec). Leaf size: 55

dsolve([diff(y(x),x)=x^2-y(x)^2,y(-1) = 0],y(x), singsol=all)
 
\[ y = \frac {x \left (\operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselK}\left (\frac {3}{4}, \frac {1}{2}\right )-\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {1}{2}\right )\right )}{\operatorname {BesselK}\left (\frac {3}{4}, \frac {1}{2}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {1}{2}\right )} \]

Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 211

DSolve[{D[y[x],x]==x^2-y[x]^2,{y[-1]==0}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {i \left (x^2 \left (-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {i}{2}\right )+i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i}{2}\right )+\operatorname {BesselJ}\left (\frac {3}{4},\frac {i}{2}\right )\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+x^2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i}{2}\right ) \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {3}{4},\frac {i}{2}\right ) \left (x^2 \left (-\operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )\right )-i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )\right )\right )}{x \left (2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i}{2}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+\left (-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {i}{2}\right )+i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i}{2}\right )+\operatorname {BesselJ}\left (\frac {3}{4},\frac {i}{2}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )\right )} \]