Internal
problem
ID
[16317]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.5,
page
175
Problem
number
:
47
Date
solved
:
Thursday, March 13, 2025 at 08:10:21 AM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=8*diff(diff(diff(diff(diff(y(t),t),t),t),t),t)+4*diff(diff(diff(diff(y(t),t),t),t),t)+66*diff(diff(diff(y(t),t),t),t)-41*diff(diff(y(t),t),t)-37*diff(y(t),t) = 0; ic:=y(0) = 4, D(y)(0) = -14, (D@@2)(y)(0) = -14, (D@@3)(y)(0) = 139, (D@@4)(y)(0) = -29/4; dsolve([ode,ic],y(t), singsol=all);
ode=8*D[ y[t],{t,5}]+4*D[y[t],{t,4}]+66*D[ y[t],{t,3}]-41*D[y[t],{t,2}]-37*D[y[t],t]==0; ic={y[0]==4,Derivative[1][y][0] ==-14,Derivative[2][y][0] ==-14,Derivative[3][y][0]==139,Derivative[4][y][0]==-29/4}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-37*Derivative(y(t), t) - 41*Derivative(y(t), (t, 2)) + 66*Derivative(y(t), (t, 3)) + 4*Derivative(y(t), (t, 4)) + 8*Derivative(y(t), (t, 5)),0) ics = {y(0): 4, Subs(Derivative(y(t), t), t, 0): -14, Subs(Derivative(y(t), (t, 2)), t, 0): -14, Subs(Derivative(y(t), (t, 3)), t, 0): 139, Subs(Derivative(y(t), (t, 4)), t, 0): -29/4} dsolve(ode,func=y(t),ics=ics)