Internal
problem
ID
[16318]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.5,
page
175
Problem
number
:
48
Date
solved
:
Thursday, March 13, 2025 at 08:10:22 AM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=2*diff(diff(diff(diff(diff(y(t),t),t),t),t),t)+7*diff(diff(diff(diff(y(t),t),t),t),t)+17*diff(diff(diff(y(t),t),t),t)+17*diff(diff(y(t),t),t)+5*diff(y(t),t) = 0; ic:=y(0) = -3, D(y)(0) = 15/2, (D@@2)(y)(0) = 17/4, (D@@3)(y)(0) = -385/8, (D@@4)(y)(0) = 1217/16; dsolve([ode,ic],y(t), singsol=all);
ode=2*D[ y[t],{t,5}]+7*D[y[t],{t,4}]+17*D[ y[t],{t,3}]+17*D[y[t],{t,2}]+5*D[y[t],t]==0; ic={y[0]==-3,Derivative[1][y][0] ==15/2,Derivative[2][y][0] ==17/4,Derivative[3][y][0]==-385/8,Derivative[4][y][0]==1217/16}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(5*Derivative(y(t), t) + 17*Derivative(y(t), (t, 2)) + 17*Derivative(y(t), (t, 3)) + 7*Derivative(y(t), (t, 4)) + 2*Derivative(y(t), (t, 5)),0) ics = {y(0): -3, Subs(Derivative(y(t), t), t, 0): 15/2, Subs(Derivative(y(t), (t, 2)), t, 0): 17/4, Subs(Derivative(y(t), (t, 3)), t, 0): -385/8, Subs(Derivative(y(t), (t, 4)), t, 0): 1217/16} dsolve(ode,func=y(t),ics=ics)