Internal
problem
ID
[16799]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
180
Date
solved
:
Tuesday, January 28, 2025 at 09:28:54 AM
CAS
classification
:
[_exact]
\begin{align*} \frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime }&=0 \end{align*}
Time used: 0.106 (sec). Leaf size: 397
\begin{align*}
y &= \frac {\left (108 \cos \left (2 x \right )-108+12 \sqrt {12 x^{6}+72 c_{1} x^{4}+144 c_{1}^{2} x^{2}+96 c_{1}^{3}+81 \cos \left (2 x \right )^{2}-162 \cos \left (2 x \right )+81}\right )^{{2}/{3}}-12 x^{2}-24 c_{1}}{6 \left (108 \cos \left (2 x \right )-108+12 \sqrt {12 x^{6}+72 c_{1} x^{4}+144 c_{1}^{2} x^{2}+96 c_{1}^{3}+81 \cos \left (2 x \right )^{2}-162 \cos \left (2 x \right )+81}\right )^{{1}/{3}}} \\
y &= -\frac {\left (\frac {i \sqrt {3}}{12}+\frac {1}{12}\right ) \left (108 \cos \left (2 x \right )-108+12 \sqrt {12 x^{6}+72 c_{1} x^{4}+144 c_{1}^{2} x^{2}+96 c_{1}^{3}+81 \cos \left (2 x \right )^{2}-162 \cos \left (2 x \right )+81}\right )^{{2}/{3}}+\left (x^{2}+2 c_{1} \right ) \left (i \sqrt {3}-1\right )}{\left (108 \cos \left (2 x \right )-108+12 \sqrt {12 x^{6}+72 c_{1} x^{4}+144 c_{1}^{2} x^{2}+96 c_{1}^{3}+81 \cos \left (2 x \right )^{2}-162 \cos \left (2 x \right )+81}\right )^{{1}/{3}}} \\
y &= \frac {\frac {\left (108 \cos \left (2 x \right )-108+12 \sqrt {12 x^{6}+72 c_{1} x^{4}+144 c_{1}^{2} x^{2}+96 c_{1}^{3}+81 \cos \left (2 x \right )^{2}-162 \cos \left (2 x \right )+81}\right )^{{2}/{3}} \left (i \sqrt {3}-1\right )}{12}+\left (x^{2}+2 c_{1} \right ) \left (1+i \sqrt {3}\right )}{\left (108 \cos \left (2 x \right )-108+12 \sqrt {12 x^{6}+72 c_{1} x^{4}+144 c_{1}^{2} x^{2}+96 c_{1}^{3}+81 \cos \left (2 x \right )^{2}-162 \cos \left (2 x \right )+81}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 0.353 (sec). Leaf size: 74
\[
\text {Solve}\left [\int _1^x\left (2 K[1]+\frac {2 \sin (2 K[1])}{y(x)}\right )dK[1]+\int _1^{y(x)}\left (\frac {\cos (2 x)-1}{K[2]^2}+2 K[2]-\int _1^x-\frac {2 \sin (2 K[1])}{K[2]^2}dK[1]\right )dK[2]=c_1,y(x)\right ]
\]