Internal
problem
ID
[16800]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
181
Date
solved
:
Tuesday, January 28, 2025 at 09:29:28 AM
CAS
classification
:
[_exact, _rational]
\begin{align*} 3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime }&=0 \end{align*}
Time used: 0.004 (sec). Leaf size: 635
\begin{align*}
y &= \frac {\left (-36 x -108 x^{3}+108 x^{2}-108 c_{1} -8+12 \sqrt {81 x^{6}-162 x^{5}+162 c_{1} x^{3}+135 x^{4}-162 c_{1} x^{2}-54 x^{3}+81 c_{1}^{2}+54 c_{1} x -15 x^{2}+12 c_{1}}\right )^{{1}/{3}}}{6}+\frac {2 x +\frac {2}{3}}{\left (-36 x -108 x^{3}+108 x^{2}-108 c_{1} -8+12 \sqrt {81 x^{6}-162 x^{5}+162 c_{1} x^{3}+135 x^{4}-162 c_{1} x^{2}-54 x^{3}+81 c_{1}^{2}+54 c_{1} x -15 x^{2}+12 c_{1}}\right )^{{1}/{3}}}-\frac {1}{3} \\
y &= \frac {i \left (4-\left (-36 x -108 x^{3}+108 x^{2}-108 c_{1} -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_{1} -54\right ) x^{3}+\left (-162 c_{1} -15\right ) x^{2}+54 c_{1} x +81 c_{1}^{2}+12 c_{1}}\right )^{{2}/{3}}+12 x \right ) \sqrt {3}-12 x -{\left (\left (-36 x -108 x^{3}+108 x^{2}-108 c_{1} -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_{1} -54\right ) x^{3}+\left (-162 c_{1} -15\right ) x^{2}+54 c_{1} x +81 c_{1}^{2}+12 c_{1}}\right )^{{1}/{3}}+2\right )}^{2}}{12 \left (-36 x -108 x^{3}+108 x^{2}-108 c_{1} -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_{1} -54\right ) x^{3}+\left (-162 c_{1} -15\right ) x^{2}+54 c_{1} x +81 c_{1}^{2}+12 c_{1}}\right )^{{1}/{3}}} \\
y &= \frac {i \left (\left (-36 x -108 x^{3}+108 x^{2}-108 c_{1} -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_{1} -54\right ) x^{3}+\left (-162 c_{1} -15\right ) x^{2}+54 c_{1} x +81 c_{1}^{2}+12 c_{1}}\right )^{{2}/{3}}-12 x -4\right ) \sqrt {3}-12 x -{\left (\left (-36 x -108 x^{3}+108 x^{2}-108 c_{1} -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_{1} -54\right ) x^{3}+\left (-162 c_{1} -15\right ) x^{2}+54 c_{1} x +81 c_{1}^{2}+12 c_{1}}\right )^{{1}/{3}}+2\right )}^{2}}{12 \left (-36 x -108 x^{3}+108 x^{2}-108 c_{1} -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_{1} -54\right ) x^{3}+\left (-162 c_{1} -15\right ) x^{2}+54 c_{1} x +81 c_{1}^{2}+12 c_{1}}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 5.835 (sec). Leaf size: 478
\begin{align*}
y(x)\to \frac {1}{6} \left (-\frac {2 \sqrt [3]{2} (3 x+1)}{\sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}}-2^{2/3} \sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}-2\right ) \\
y(x)\to \frac {1}{12} \left (\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) (3 x+1)}{\sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}}+2^{2/3} \left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}-4\right ) \\
y(x)\to \frac {1}{12} \left (\frac {2 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) (3 x+1)}{\sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}}+2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}-4\right ) \\
\end{align*}