74.18.10 problem 16

Internal problem ID [16488]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 16
Date solved : Thursday, March 13, 2025 at 08:14:51 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-10 y^{\prime }+34 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)-10*diff(y(x),x)+34*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{5 x} \left (c_{1} \sin \left (3 x \right )+c_{2} \cos \left (3 x \right )\right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 26
ode=D[y[x],{x,2}]-10*D[y[x],x]+34*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{5 x} (c_2 \cos (3 x)+c_1 \sin (3 x)) \]
Sympy. Time used: 0.162 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(34*y(x) - 10*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )}\right ) e^{5 x} \]