Internal
problem
ID
[738]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.6,
Substitution
methods
and
exact
equations.
Page
74
Problem
number
:
10
Date
solved
:
Tuesday, March 04, 2025 at 11:37:34 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x*y(x)*diff(y(x),x) = x^2+3*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x*y[x]*D[y[x],x] == x^2+3*y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 + x*y(x)*Derivative(y(x), x) - 3*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)