Internal
problem
ID
[739]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.6,
Substitution
methods
and
exact
equations.
Page
74
Problem
number
:
11
Date
solved
:
Tuesday, March 04, 2025 at 11:38:50 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=(x^2-y(x)^2)*diff(y(x),x) = 2*x*y(x); dsolve(ode,y(x), singsol=all);
ode=(x^2-y[x]^2)*D[y[x],x]== 2*x*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x) + (x**2 - y(x)**2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)