Internal
problem
ID
[16791]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
12.
Miscellaneous
problems.
Exercises
page
93
Problem
number
:
278
Date
solved
:
Thursday, March 13, 2025 at 08:47:16 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
ode:=x^3-3*x*y(x)^2+(y(x)^3-3*x^2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^3-3*x*y[x]^2)+(y[x]^3-3*x^2*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 - 3*x*y(x)**2 + (-3*x**2*y(x) + y(x)**3)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)