75.12.5 problem 279

Internal problem ID [16792]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 12. Miscellaneous problems. Exercises page 93
Problem number : 279
Date solved : Thursday, March 13, 2025 at 08:48:00 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} 5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.173 (sec). Leaf size: 439
ode:=5*x*y(x)-4*y(x)^2-6*x^2+(y(x)^2-8*x*y(x)+5/2*x^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\frac {\left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{1}/{3}}}{2}+\frac {27 x^{2} c_{1}^{2}}{\left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{1}/{3}}}+4 c_{1} x}{c_{1}} \\ y &= \frac {54 i \sqrt {3}\, c_{1}^{2} x^{2}-i \sqrt {3}\, \left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{2}/{3}}-54 c_{1}^{2} x^{2}+16 c_{1} x \left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{1}/{3}}-\left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{2}/{3}}}{4 \left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{1}/{3}} c_{1}} \\ y &= -\frac {54 i \sqrt {3}\, c_{1}^{2} x^{2}-i \sqrt {3}\, \left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{2}/{3}}+54 c_{1}^{2} x^{2}-16 c_{1} x \left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{1}/{3}}+\left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{2}/{3}}}{4 \left (416 c_{1}^{3} x^{3}+2+2 \sqrt {3898 c_{1}^{6} x^{6}+416 c_{1}^{3} x^{3}+1}\right )^{{1}/{3}} c_{1}} \\ \end{align*}
Mathematica. Time used: 37.682 (sec). Leaf size: 741
ode=(5*x*y[x]-4*y[x]^2-6*x^2)+(y[x]^2-8*x*y[x]+25/10*x^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{208 x^3+\sqrt {3898 x^6+416 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2^{2/3}}+\frac {27 x^2}{\sqrt [3]{2} \sqrt [3]{208 x^3+\sqrt {3898 x^6+416 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+4 x \\ y(x)\to -\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{208 x^3+\sqrt {3898 x^6+416 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2\ 2^{2/3}}-\frac {27 \left (1+i \sqrt {3}\right ) x^2}{2 \sqrt [3]{2} \sqrt [3]{208 x^3+\sqrt {3898 x^6+416 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+4 x \\ y(x)\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{208 x^3+\sqrt {3898 x^6+416 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2\ 2^{2/3}}-\frac {27 \left (1-i \sqrt {3}\right ) x^2}{2 \sqrt [3]{2} \sqrt [3]{208 x^3+\sqrt {3898 x^6+416 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+4 x \\ y(x)\to \frac {27\ 2^{2/3} x^2+8 \sqrt [3]{\sqrt {3898} \sqrt {x^6}+208 x^3} x+\sqrt [3]{2} \left (\sqrt {3898} \sqrt {x^6}+208 x^3\right )^{2/3}}{2 \sqrt [3]{\sqrt {3898} \sqrt {x^6}+208 x^3}} \\ y(x)\to \frac {27 i 2^{2/3} \sqrt {3} x^2-27\ 2^{2/3} x^2+16 \sqrt [3]{\sqrt {3898} \sqrt {x^6}+208 x^3} x-i \sqrt [3]{2} \sqrt {3} \left (\sqrt {3898} \sqrt {x^6}+208 x^3\right )^{2/3}-\sqrt [3]{2} \left (\sqrt {3898} \sqrt {x^6}+208 x^3\right )^{2/3}}{4 \sqrt [3]{\sqrt {3898} \sqrt {x^6}+208 x^3}} \\ y(x)\to \frac {\left (\sqrt {3898} \sqrt {x^6}+208 x^3\right )^{2/3} \text {Root}\left [\text {$\#$1}^3-16\&,3\right ]-54 \sqrt [3]{-1} 2^{2/3} x^2+16 \sqrt [3]{\sqrt {3898} \sqrt {x^6}+208 x^3} x}{4 \sqrt [3]{\sqrt {3898} \sqrt {x^6}+208 x^3}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*x**2 + 5*x*y(x) + (5*x**2/2 - 8*x*y(x) + y(x)**2)*Derivative(y(x), x) - 4*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out