Internal
problem
ID
[17346]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
5
Date
solved
:
Thursday, March 13, 2025 at 09:30:08 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=(x^2-y(x)^2)^(1/2)+y(x) = x*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=Sqrt[x^2-y[x]^2]+y[x]==x*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) + sqrt(x**2 - y(x)**2) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)