76.5.6 problem 6

Internal problem ID [17347]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.7 (Substitution Methods). Problems at page 108
Problem number : 6
Date solved : Thursday, March 13, 2025 at 09:31:40 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x y y^{\prime }&=\left (x +y\right )^{2} \end{align*}

Maple. Time used: 0.140 (sec). Leaf size: 21
ode:=x*y(x)*diff(y(x),x) = (x+y(x))^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x \left (1+\operatorname {LambertW}\left (-\frac {{\mathrm e}^{-4 c_{1} -1}}{x^{4}}\right )\right )}{2} \]
Mathematica. Time used: 0.09 (sec). Leaf size: 32
ode=x*y[x]*D[y[x],x]==(x+y[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]}{2 K[1]+1}dK[1]=\log (x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)*Derivative(y(x), x) - (x + y(x))**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded