77.1.54 problem 73 (page 112)

Internal problem ID [17944]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 73 (page 112)
Date solved : Tuesday, January 28, 2025 at 11:14:37 AM
CAS classification : [_quadrature]

\begin{align*} y^{2} \left (y^{\prime }-1\right )&=\left (2-y^{\prime }\right )^{2} \end{align*}

Solution by Maple

Time used: 0.163 (sec). Leaf size: 75

dsolve(y(x)^2*(diff(y(x),x)-1)=(2-diff(y(x),x))^2,y(x), singsol=all)
 
\begin{align*} y &= -2 i \\ y &= 2 i \\ x +2 \left (\int _{}^{y}\frac {1}{-\textit {\_a}^{2}+\sqrt {\textit {\_a}^{2} \left (\textit {\_a}^{2}+4\right )}-4}d \textit {\_a} \right )-c_{1} &= 0 \\ x -2 \left (\int _{}^{y}\frac {1}{\textit {\_a}^{2}+\sqrt {\textit {\_a}^{2} \left (\textit {\_a}^{2}+4\right )}+4}d \textit {\_a} \right )-c_{1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.539 (sec). Leaf size: 73

DSolve[y[x]^2*(D[y[x],x]-1)==(2-D[y[x],x])^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {x^2-4 c_1 x-1+4 c_1{}^2}{x-2 c_1} \\ y(x)\to \frac {x^2+4 c_1 x-1+4 c_1{}^2}{x+2 c_1} \\ y(x)\to -2 i \\ y(x)\to 2 i \\ \end{align*}