Internal
problem
ID
[17945]
Book
:
V.V.
Stepanov,
A
course
of
differential
equations
(in
Russian),
GIFML.
Moscow
(1958)
Section
:
All
content
Problem
number
:
74
(page
112)
Date
solved
:
Tuesday, January 28, 2025 at 11:14:40 AM
CAS
classification
:
[_quadrature]
Time used: 0.218 (sec). Leaf size: 325
\begin{align*}
y &= 2 \alpha \\
y &= \operatorname {RootOf}\left (\textit {\_Z}^{2}-\left (-2 c_{1} +2 x \right ) \textit {\_Z} -\left (\alpha \cos \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) \alpha +\textit {\_Z} \alpha +c_{1} -x \right ) \left (-\cos \left (\textit {\_Z} \right ) \alpha +\textit {\_Z} \alpha +c_{1} -x \right )\right )\right )+c_{1} -x \right ) \left (\alpha \cos \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) \alpha +\textit {\_Z} \alpha +c_{1} -x \right ) \left (-\cos \left (\textit {\_Z} \right ) \alpha +\textit {\_Z} \alpha +c_{1} -x \right )\right )\right )-c_{1} +x \right )\right ) \tan \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) \alpha +\textit {\_Z} \alpha +c_{1} -x \right ) \left (-\cos \left (\textit {\_Z} \right ) \alpha +\textit {\_Z} \alpha +c_{1} -x \right )\right )\right )+\left (-x +c_{1} \right ) \tan \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) \alpha +\textit {\_Z} \alpha +c_{1} -x \right ) \left (-\cos \left (\textit {\_Z} \right ) \alpha +\textit {\_Z} \alpha +c_{1} -x \right )\right )\right )+\alpha \\
y &= \operatorname {RootOf}\left (\textit {\_Z}^{2}-\left (-2 x +2 c_{1} \right ) \textit {\_Z} -\left (\alpha \cos \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) \alpha -\textit {\_Z} \alpha +c_{1} -x \right ) \left (-\cos \left (\textit {\_Z} \right ) \alpha -\textit {\_Z} \alpha +c_{1} -x \right )\right )\right )+c_{1} -x \right ) \left (\alpha \cos \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) \alpha -\textit {\_Z} \alpha +c_{1} -x \right ) \left (-\cos \left (\textit {\_Z} \right ) \alpha -\textit {\_Z} \alpha +c_{1} -x \right )\right )\right )-c_{1} +x \right )\right ) \tan \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) \alpha -\textit {\_Z} \alpha +c_{1} -x \right ) \left (-\cos \left (\textit {\_Z} \right ) \alpha -\textit {\_Z} \alpha +c_{1} -x \right )\right )\right )+\left (x -c_{1} \right ) \tan \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) \alpha -\textit {\_Z} \alpha +c_{1} -x \right ) \left (-\cos \left (\textit {\_Z} \right ) \alpha -\textit {\_Z} \alpha +c_{1} -x \right )\right )\right )+\alpha \\
\end{align*}
Time used: 1.302 (sec). Leaf size: 356
\begin{align*}
y(x)\to \text {InverseFunction}\left [\frac {\left (\sqrt {\text {$\#$1}}-1\right ) \left (\sqrt {a-\text {$\#$1}}-\sqrt {a-1}\right ) \left (\text {$\#$1} a+\sqrt {a-1} a \sqrt {a-\text {$\#$1}}+\sqrt {\text {$\#$1}} a-2 \sqrt {\text {$\#$1}} \sqrt {a-1} \sqrt {a-\text {$\#$1}}-2 \text {$\#$1}-a^2+a\right )}{\left (\sqrt {a-1} \sqrt {a-\text {$\#$1}}+\sqrt {\text {$\#$1}}-a\right )^2}+2 a \arctan \left (\frac {1-\sqrt {\text {$\#$1}}}{\sqrt {a-1}-\sqrt {a-\text {$\#$1}}}\right )\&\right ][-x+c_1] \\
y(x)\to \text {InverseFunction}\left [\frac {\left (\sqrt {\text {$\#$1}}-1\right ) \left (\sqrt {a-\text {$\#$1}}-\sqrt {a-1}\right ) \left (\text {$\#$1} a+\sqrt {a-1} a \sqrt {a-\text {$\#$1}}+\sqrt {\text {$\#$1}} a-2 \sqrt {\text {$\#$1}} \sqrt {a-1} \sqrt {a-\text {$\#$1}}-2 \text {$\#$1}-a^2+a\right )}{\left (\sqrt {a-1} \sqrt {a-\text {$\#$1}}+\sqrt {\text {$\#$1}}-a\right )^2}+2 a \arctan \left (\frac {1-\sqrt {\text {$\#$1}}}{\sqrt {a-1}-\sqrt {a-\text {$\#$1}}}\right )\&\right ][x+c_1] \\
y(x)\to a \\
\end{align*}