Internal
problem
ID
[1215]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Section
2.6.
Page
100
Problem
number
:
30
Date
solved
:
Monday, January 27, 2025 at 04:45:31 AM
CAS
classification
:
[_rational]
\begin{align*} \frac {4 x^{3}}{y^{2}}+\frac {3}{y}+\left (\frac {3 x}{y^{2}}+4 y\right ) y^{\prime }&=0 \end{align*}
Time used: 0.004 (sec). Leaf size: 17
Time used: 60.161 (sec). Leaf size: 1181
\begin{align*}
y(x)\to -\frac {1}{2} \sqrt {\frac {6 x}{\sqrt {\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}+\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}}}-\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}-\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}}-\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}+\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}} \\
y(x)\to \frac {1}{2} \sqrt {\frac {6 x}{\sqrt {\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}+\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}}}-\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}-\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}}-\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}+\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}} \\
y(x)\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}+\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}}-\frac {1}{2} \sqrt {-\frac {6 x}{\sqrt {\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}+\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}}}-\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}-\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}} \\
y(x)\to \frac {1}{2} \sqrt {-\frac {6 x}{\sqrt {\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}+\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}}}-\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}-\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}}+\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (x^4-c_1\right )}{\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}+\frac {\sqrt [3]{243 x^2+\sqrt {59049 x^4-6912 \left (x^4-c_1\right ){}^3}}}{3 \sqrt [3]{2}}} \\
\end{align*}