10.5.24 problem 30

Internal problem ID [1216]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Section 2.6. Page 100
Problem number : 30
Date solved : Monday, January 27, 2025 at 04:45:33 AM
CAS classification : [_rational]

\begin{align*} 3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 322

dsolve(3*x+6/y(x)+(x^2/y(x)+3*y(x)/x)*diff(y(x),x) = 0,y(x), singsol=all)
 
\begin{align*} y &= \frac {-12 x^{3}+\left (-324 x^{2}-108 c_1 +12 \sqrt {12 x^{9}+729 x^{4}+486 c_1 \,x^{2}+81 c_1^{2}}\right )^{{2}/{3}}}{6 \left (-324 x^{2}-108 c_1 +12 \sqrt {12 x^{9}+729 x^{4}+486 c_1 \,x^{2}+81 c_1^{2}}\right )^{{1}/{3}}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (-324 x^{2}-108 c_1 +12 \sqrt {12 x^{9}+729 x^{4}+486 c_1 \,x^{2}+81 c_1^{2}}\right )^{{1}/{3}}}{12}-\frac {x^{3} \left (i \sqrt {3}-1\right )}{\left (-324 x^{2}-108 c_1 +12 \sqrt {12 x^{9}+729 x^{4}+486 c_1 \,x^{2}+81 c_1^{2}}\right )^{{1}/{3}}} \\ y &= \frac {12 i \sqrt {3}\, x^{3}+i \sqrt {3}\, \left (-324 x^{2}-108 c_1 +12 \sqrt {12 x^{9}+729 x^{4}+486 c_1 \,x^{2}+81 c_1^{2}}\right )^{{2}/{3}}+12 x^{3}-\left (-324 x^{2}-108 c_1 +12 \sqrt {12 x^{9}+729 x^{4}+486 c_1 \,x^{2}+81 c_1^{2}}\right )^{{2}/{3}}}{12 \left (-324 x^{2}-108 c_1 +12 \sqrt {12 x^{9}+729 x^{4}+486 c_1 \,x^{2}+81 c_1^{2}}\right )^{{1}/{3}}} \\ \end{align*}

Solution by Mathematica

Time used: 4.808 (sec). Leaf size: 331

DSolve[3*x+6/y[x]+(x^2/y[x]+3*y[x]/x)*D[y[x],x] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{-81 x^2+\sqrt {108 x^9+729 \left (-3 x^2+c_1\right ){}^2}+27 c_1}}{3 \sqrt [3]{2}}-\frac {\sqrt [3]{2} x^3}{\sqrt [3]{-81 x^2+\sqrt {108 x^9+729 \left (-3 x^2+c_1\right ){}^2}+27 c_1}} \\ y(x)\to \frac {\left (-1+i \sqrt {3}\right ) \sqrt [3]{-81 x^2+\sqrt {108 x^9+729 \left (-3 x^2+c_1\right ){}^2}+27 c_1}}{6 \sqrt [3]{2}}+\frac {\left (1+i \sqrt {3}\right ) x^3}{2^{2/3} \sqrt [3]{-81 x^2+\sqrt {108 x^9+729 \left (-3 x^2+c_1\right ){}^2}+27 c_1}} \\ y(x)\to \frac {\left (1-i \sqrt {3}\right ) x^3}{2^{2/3} \sqrt [3]{-81 x^2+\sqrt {108 x^9+729 \left (-3 x^2+c_1\right ){}^2}+27 c_1}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-81 x^2+\sqrt {108 x^9+729 \left (-3 x^2+c_1\right ){}^2}+27 c_1}}{6 \sqrt [3]{2}} \\ \end{align*}