77.1.125 problem 152 (page 224)

Internal problem ID [17936]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 152 (page 224)
Date solved : Thursday, March 13, 2025 at 11:10:59 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 36
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+2*diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {x}{2}} \left (\left (c_4 x +c_{2} \right ) \cos \left (\frac {\sqrt {3}\, x}{2}\right )+\sin \left (\frac {\sqrt {3}\, x}{2}\right ) \left (c_{3} x +c_{1} \right )\right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 52
ode=D[y[x],{x,4}]+2*D[y[x],{x,3}]+3*D[y[x],{x,2}]+2*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x/2} \left ((c_4 x+c_3) \cos \left (\frac {\sqrt {3} x}{2}\right )+(c_2 x+c_1) \sin \left (\frac {\sqrt {3} x}{2}\right )\right ) \]
Sympy. Time used: 0.246 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 2*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (\left (C_{1} + C_{2} x\right ) \sin {\left (\frac {\sqrt {3} x}{2} \right )} + \left (C_{3} + C_{4} x\right ) \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{- \frac {x}{2}} \]