77.1.126 problem 153 (page 236)

Internal problem ID [17937]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 153 (page 236)
Date solved : Thursday, March 13, 2025 at 11:11:00 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 24
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3}{8}+\left (c_{1} x +c_{2} \right ) {\mathrm e}^{2 x}+\frac {x^{2}}{4}+\frac {x}{2} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 37
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{8} \left (2 x^2+4 x+3\right )+c_1 e^{2 x}+c_2 e^{2 x} x \]
Sympy. Time used: 0.178 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + 4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{4} + \frac {x}{2} + \left (C_{1} + C_{2} x\right ) e^{2 x} + \frac {3}{8} \]