78.19.12 problem 4 (a)

Internal problem ID [18431]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 4 (a)
Date solved : Tuesday, January 28, 2025 at 11:49:56 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 4 x y^{\prime \prime }+2 y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 44

Order:=6; 
dsolve(4*x*diff(y(x),x$2)+2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} \sqrt {x}\, \left (1-\frac {1}{6} x +\frac {1}{120} x^{2}-\frac {1}{5040} x^{3}+\frac {1}{362880} x^{4}-\frac {1}{39916800} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1-\frac {1}{2} x +\frac {1}{24} x^{2}-\frac {1}{720} x^{3}+\frac {1}{40320} x^{4}-\frac {1}{3628800} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 85

AsymptoticDSolveValue[4*x*D[y[x],{x,2}]+2*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt {x} \left (-\frac {x^5}{39916800}+\frac {x^4}{362880}-\frac {x^3}{5040}+\frac {x^2}{120}-\frac {x}{6}+1\right )+c_2 \left (-\frac {x^5}{3628800}+\frac {x^4}{40320}-\frac {x^3}{720}+\frac {x^2}{24}-\frac {x}{2}+1\right ) \]