78.19.13 problem 4 (b)

Internal problem ID [18432]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 4 (b)
Date solved : Tuesday, January 28, 2025 at 11:49:57 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} 2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 44

Order:=6; 
dsolve(2*x*diff(y(x),x$2)+(3-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_{1} \left (1+\frac {1}{2} x +\frac {1}{8} x^{2}+\frac {1}{48} x^{3}+\frac {1}{384} x^{4}+\frac {1}{3840} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}}+c_{2} \left (1+\frac {1}{3} x +\frac {1}{15} x^{2}+\frac {1}{105} x^{3}+\frac {1}{945} x^{4}+\frac {1}{10395} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 85

AsymptoticDSolveValue[2*x*D[y[x],{x,2}]+(3-x)*D[y[x],x]-y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^5}{10395}+\frac {x^4}{945}+\frac {x^3}{105}+\frac {x^2}{15}+\frac {x}{3}+1\right )+\frac {c_2 \left (\frac {x^5}{3840}+\frac {x^4}{384}+\frac {x^3}{48}+\frac {x^2}{8}+\frac {x}{2}+1\right )}{\sqrt {x}} \]