78.19.14 problem 4 (c)

Internal problem ID [18433]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 4 (c)
Date solved : Tuesday, January 28, 2025 at 11:49:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 44

Order:=6; 
dsolve(2*x*diff(y(x),x$2)+(x+1)*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} \sqrt {x}\, \left (1-\frac {7}{6} x +\frac {21}{40} x^{2}-\frac {11}{80} x^{3}+\frac {143}{5760} x^{4}-\frac {13}{3840} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1-3 x +2 x^{2}-\frac {2}{3} x^{3}+\frac {1}{7} x^{4}-\frac {1}{45} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 81

AsymptoticDSolveValue[2*x*D[y[x],{x,2}]+(x+1)*D[y[x],x]+3*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt {x} \left (-\frac {13 x^5}{3840}+\frac {143 x^4}{5760}-\frac {11 x^3}{80}+\frac {21 x^2}{40}-\frac {7 x}{6}+1\right )+c_2 \left (-\frac {x^5}{45}+\frac {x^4}{7}-\frac {2 x^3}{3}+2 x^2-3 x+1\right ) \]