78.8.31 problem 31

Internal problem ID [18150]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Miscellaneous Problems for Chapter 2. Problems at page 99
Problem number : 31
Date solved : Thursday, March 13, 2025 at 11:44:37 AM
CAS classification : [_separable]

\begin{align*} 3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y}&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 11
ode:=3*x^2*ln(y(x))+x^3/y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {c_{1}}{x^{3}}} \]
Mathematica. Time used: 0.168 (sec). Leaf size: 20
ode=3*x^2*Log[y[x]]+ x^3/y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to e^{\frac {e^{c_1}}{x^3}} \\ y(x)\to 1 \\ \end{align*}
Sympy. Time used: 0.423 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), x)/y(x) + 3*x**2*log(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{\frac {C_{1}}{x^{3}}} \]