Internal
problem
ID
[18151]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Miscellaneous
Problems
for
Chapter
2.
Problems
at
page
99
Problem
number
:
32
Date
solved
:
Thursday, March 13, 2025 at 11:44:40 AM
CAS
classification
:
[_exact, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
ode:=3*y(x)^2/(x^2+3*x)+(2*y(x)*ln(5*x/(x+3))+3*sin(y(x)))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=3*y[x]^2/(x^2+3*x) + (2*y[x]*Log[ 5*x/(x+3) ] +3*Sin[y[x]] ) *D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*y(x)*log(5*x/(x + 3)) + 3*sin(y(x)))*Derivative(y(x), x) + 3*y(x)**2/(x**2 + 3*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ZeroDivisionError : polynomial division