78.8.32 problem 32

Internal problem ID [18151]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Miscellaneous Problems for Chapter 2. Problems at page 99
Problem number : 32
Date solved : Thursday, March 13, 2025 at 11:44:40 AM
CAS classification : [_exact, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.014 (sec). Leaf size: 26
ode:=3*y(x)^2/(x^2+3*x)+(2*y(x)*ln(5*x/(x+3))+3*sin(y(x)))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \left (\ln \left (5\right )+\ln \left (\frac {x}{x +3}\right )\right ) y^{2}-3 \cos \left (y\right )+c_{1} = 0 \]
Mathematica. Time used: 0.414 (sec). Leaf size: 64
ode=3*y[x]^2/(x^2+3*x) + (2*y[x]*Log[ 5*x/(x+3) ] +3*Sin[y[x]] ) *D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [y(x)^2 (-\log (x))+y(x)^2 \log \left (\frac {5 x}{x+3}\right )+3 y(x)^2 \left (\frac {\log (x)}{3}-\frac {1}{3} \log (x+3)\right )+y(x)^2 \log (x+3)-3 \cos (y(x))=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*y(x)*log(5*x/(x + 3)) + 3*sin(y(x)))*Derivative(y(x), x) + 3*y(x)**2/(x**2 + 3*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ZeroDivisionError : polynomial division