78.14.4 problem 3 (b)

Internal problem ID [18261]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 19. The Method of Variation of Parameters. Problems at page 135
Problem number : 3 (b)
Date solved : Thursday, March 13, 2025 at 11:51:45 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-x} \ln \left (x \right ) \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 30
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = exp(-x)*ln(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-x} \left (2 \ln \left (x \right ) x^{2}+4 c_{1} x -3 x^{2}+4 c_{2} \right )}{4} \]
Mathematica. Time used: 0.028 (sec). Leaf size: 36
ode=D[y[x],{x,2}] +2*D[y[x],x]+y[x]==Exp[-x]*Log[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} e^{-x} \left (-3 x^2+2 x^2 \log (x)+4 c_2 x+4 c_1\right ) \]
Sympy. Time used: 0.286 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - exp(-x)*log(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + \frac {x \log {\left (x \right )}}{2} - \frac {3 x}{4}\right )\right ) e^{- x} \]