82.11.1 problem Ex. 1

Internal problem ID [18761]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Exercises at page 28
Problem number : Ex. 1
Date solved : Tuesday, January 28, 2025 at 12:15:22 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} y^{\prime }+\frac {y}{x}&=x^{2} y^{6} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 254

dsolve(diff(y(x),x)+1/x*y(x)=x^2*y(x)^6,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {2^{{1}/{5}} \left (x^{2} \left (2 c_{1} x^{2}+5\right )^{4}\right )^{{1}/{5}}}{2 c_{1} x^{3}+5 x} \\ y \left (x \right ) &= -\frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}+\sqrt {5}+1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_{1} x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_{1} x^{3}+20 x} \\ y \left (x \right ) &= \frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}-\sqrt {5}-1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_{1} x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_{1} x^{3}+20 x} \\ y \left (x \right ) &= -\frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}-\sqrt {5}+1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_{1} x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_{1} x^{3}+20 x} \\ y \left (x \right ) &= \frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}+\sqrt {5}-1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_{1} x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_{1} x^{3}+20 x} \\ \end{align*}

Solution by Mathematica

Time used: 1.041 (sec). Leaf size: 141

DSolve[D[y[x],x]+1/x*y[x]==x^2*y[x]^6,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt [5]{-2}}{\sqrt [5]{x^3 \left (5+2 c_1 x^2\right )}} \\ y(x)\to \frac {1}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to \frac {(-1)^{2/5}}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to -\frac {(-1)^{3/5}}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to \frac {(-1)^{4/5}}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to 0 \\ \end{align*}