82.11.2 problem Ex. 2

Internal problem ID [18762]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Exercises at page 28
Problem number : Ex. 2
Date solved : Tuesday, January 28, 2025 at 12:15:25 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} 1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 18

dsolve(1+y(x)^2=(arctan(y(x))-x)*diff(y(x),x),y(x), singsol=all)
 
\[ y \left (x \right ) = \tan \left (\operatorname {LambertW}\left (-c_{1} {\mathrm e}^{-x -1}\right )+x +1\right ) \]

Solution by Mathematica

Time used: 60.158 (sec). Leaf size: 21

DSolve[1+y[x]^2==(ArcTan[y[x]]-x)*D[y[x],x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \tan \left (W\left (c_1 \left (-e^{-x-1}\right )\right )+x+1\right ) \]