Internal
problem
ID
[18406]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
10.
Systems
of
First
Order
Equations.
Section
60.
Critical
Points
and
Stability
for
Linear
Systems.
Problems
at
page
539
Problem
number
:
1
(f)
Date
solved
:
Thursday, March 13, 2025 at 11:55:43 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 4*x(t)-3*y(t), diff(y(t),t) = 8*x(t)-6*y(t)]; dsolve(ode);
ode={D[x[t],t]==4*x[t]-3*y[t],D[y[t],t]==8*x[t]-6*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-4*x(t) + 3*y(t) + Derivative(x(t), t),0),Eq(-8*x(t) + 6*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)