Internal
problem
ID
[18407]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
10.
Systems
of
First
Order
Equations.
Section
60.
Critical
Points
and
Stability
for
Linear
Systems.
Problems
at
page
539
Problem
number
:
1
(g)
Date
solved
:
Thursday, March 13, 2025 at 11:55:44 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 4*x(t)-2*y(t), diff(y(t),t) = 5*x(t)+2*y(t)]; dsolve(ode);
ode={D[x[t],t]==4*x[t]-2*y[t],D[y[t],t]==5*x[t]+2*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-4*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-5*x(t) - 2*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)