Internal
problem
ID
[910]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
5.6,
Forced
Oscillations
and
Resonance.
Page
362
Problem
number
:
3
Date
solved
:
Tuesday, March 04, 2025 at 12:00:38 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(x(t),t),t)+100*x(t) = 225*cos(5*t)+300*sin(5*t); ic:=x(0) = 375, D(x)(0) = 0; dsolve([ode,ic],x(t), singsol=all);
ode=D[x[t],{t,2}]+100*x[t]==225*Cos[5*t]+300*Sin[5*t]; ic={x[0]==375,Derivative[1][x][0 ]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(100*x(t) - 300*sin(5*t) - 225*cos(5*t) + Derivative(x(t), (t, 2)),0) ics = {x(0): 375, Subs(Derivative(x(t), t), t, 0): 0} dsolve(ode,func=x(t),ics=ics)