8.12.4 problem 4

Internal problem ID [911]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number : 4
Date solved : Tuesday, March 04, 2025 at 12:00:44 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{\prime \prime }+25 x&=90 \cos \left (4 t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=0\\ x^{\prime }\left (0\right )&=90 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 23
ode:=diff(diff(x(t),t),t)+25*x(t) = 90*cos(4*t); 
ic:=x(0) = 0, D(x)(0) = 90; 
dsolve([ode,ic],x(t), singsol=all);
 
\[ x \left (t \right ) = 18 \sin \left (5 t \right )-10 \cos \left (5 t \right )+10 \cos \left (4 t \right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 26
ode=D[x[t],{t,2}]+25*x[t]==90*Cos[4*t]; 
ic={x[0]==0,Derivative[1][x][0 ]==90}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\[ x(t)\to 2 (9 \sin (5 t)+5 \cos (4 t)-5 \cos (5 t)) \]
Sympy. Time used: 0.083 (sec). Leaf size: 22
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(25*x(t) - 90*cos(4*t) + Derivative(x(t), (t, 2)),0) 
ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 90} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = 18 \sin {\left (5 t \right )} + 10 \cos {\left (4 t \right )} - 10 \cos {\left (5 t \right )} \]