Internal
problem
ID
[18615]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
V.
Homogeneous
linear
differential
equations.
Exact
equations.
Exercises
at
page
69
Problem
number
:
11
Date
solved
:
Thursday, March 13, 2025 at 12:25:22 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=(x^2-x)*diff(diff(y(x),x),x)+(3*x-2)*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-x)*D[y[x],{x,2}]+(3*x-2)*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x - 2)*Derivative(y(x), x) + (x**2 - x)*Derivative(y(x), (x, 2)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False