Internal
problem
ID
[18616]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
V.
Homogeneous
linear
differential
equations.
Exact
equations.
Exercises
at
page
69
Problem
number
:
12
Date
solved
:
Thursday, March 13, 2025 at 12:25:24 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=(3*x^2+x)*diff(diff(y(x),x),x)+2*(6*x+1)*diff(y(x),x)+6*y(x) = sin(x); dsolve(ode,y(x), singsol=all);
ode=(x+3*x^2)*D[y[x],{x,2}]+2*(1+6*x)*D[y[x],x]+6*y[x]==Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((12*x + 2)*Derivative(y(x), x) + (3*x**2 + x)*Derivative(y(x), (x, 2)) + 6*y(x) - sin(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-3*x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), (x, 2)) - 6*y(x) + sin(x))/(2*(6*x + 1)) cannot be solved by the factorable group method